Posterior exploration based sequential Monte Carlo for global optimization

نویسنده

  • Bin Liu
چکیده

We propose a global optimization algorithm based on the Sequential Monte Carlo (SMC) sampling framework. In this framework, the objective function is normalized to be a probabilistic density function (pdf), based on which a sequence of annealed target pdfs is designed to asymptotically converge on the set of global optima. A sequential importance sampling (SIS) procedure is performed to simulate the resulting targets, and the maxima of the objective function is assessed from the yielded samples. The disturbing issue lies in the design of the importance sampling (IS) pdf, which crucially influences the IS efficiency. We propose an approach to design the IS pdf online by embedding a posterior exploration (PE) procedure into each iteration of the SMC framework. The PE procedure can also explore the important regions of the parameter space supported by the target pdf. A byproduct of the PE procedure is an adaptive mechanism to design the annealing temperature schedule online. We compare the performance of the proposed algorithm with those of several existing related alternatives by applying them to over a dozen standard benchmark functions. The result demonstrates the appealing properties of our algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Monte Carlo simulated annealing

In this paper, we propose a population-based optimization algorithm, Sequential Monte Carlo Simulated Annealing (SMC-SA), for continuous global optimization. SMC-SA incorporates the sequential Monte Carlo method to track the converging sequence of Boltzmann distributions in simulated annealing. We prove an upper bound on the difference between the empirical distribution yielded by SMC-SA and th...

متن کامل

Sequential Monte Carlo Samplers

In this paper, we propose a methodology to sample sequentially from a sequence of probability distributions known up to a normalizing constant and defined on a common space. These probability distributions are approximated by a cloud of weighted random samples which are propagated over time using Sequential Monte Carlo methods. This methodology allows us to derive simple algorithms to make para...

متن کامل

A New Populatoin-based Simulated Annealing Algorithm

In this paper, we propose sequential Monte Carlo simulated annealing (SMC-SA), a populationbased simulated annealing algorithm, for continuous global optimization. SMC-SA incorporates the sequential Monte Carlo method to track the converging sequence of Boltzmann distributions in simulated annealing, such that the empirical distribution will converge weakly to the uniform distribution on the se...

متن کامل

Variational Sequential Monte Carlo

Many recent advances in large scale probabilistic inference rely on variational methods. The success of variational approaches depends on (i) formulating a flexible parametric family of distributions, and (ii) optimizing the parameters to find the member of this family that most closely approximates the exact posterior. In this paper we present a new approximating family of distributions, the v...

متن کامل

Adaptive Path Design of a Moving Radar

We consider the problem of designing the trajectory of a radar mounted on a moving platform. We develop an adaptive algorithm that, at each time step, optimally selects the radar path in response to the estimated and predicted target parameters to improve the tracking accuracy. We derive our approach under a framework of sequential Bayesian filtering. We apply a sequential Monte Carlo method (p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Global Optimization

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2017